76.6x+x^2=0.5/0.114

Simple and best practice solution for 76.6x+x^2=0.5/0.114 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 76.6x+x^2=0.5/0.114 equation:



76.6x+x^2=0.5/0.114
We move all terms to the left:
76.6x+x^2-(0.5/0.114)=0
We add all the numbers together, and all the variables
x^2+76.6x-(+0.5/0.114)=0
We get rid of parentheses
x^2+76.6x-0.5/0.114=0
We multiply all the terms by the denominator
x^2*0.114+(76.6x)*0.114-0.5=0
We add all the numbers together, and all the variables
x^2*0.114+(+76.6x)*0.114-0.5=0
We multiply parentheses
x^2*0.114+8.664x-0.5=0
Wy multiply elements
0.114x^2+8.664x-0.5=0
a = 0.114; b = 8.664; c = -0.5;
Δ = b2-4ac
Δ = 8.6642-4·0.114·(-0.5)
Δ = 75.292896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8.664)-\sqrt{75.292896}}{2*0.114}=\frac{-8.664-\sqrt{75.292896}}{0.228} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8.664)+\sqrt{75.292896}}{2*0.114}=\frac{-8.664+\sqrt{75.292896}}{0.228} $

See similar equations:

| 76.6x+x=0.5/0.114 | | 76.6*x+x=0.5/0.114 | | x+76.6x=0 | | 76.6x=0 | | 12+1x=23 | | 5(x-1)=2x+7+2x | | 8x-9-x=4x+12 | | 5.2g+7=1.2g+31 | | 6=u+2u | | 8(1+5x)-5=13-5x | | 8(1-5x)-5=13-5x | | 3/7*v-5/6=-4/3 | | 0.40t+12.50=0.25t+14.75 | | -S(-8x-6)=-6x-22 | | 28x^-85x+63=0 | | 12y+3=10+2y+ | | 3(-2x-3)+4=8 | | 7x5=5x2= | | 3(-2x-3)=8 | | 3x+8=49 | | 5m-4=34 | | -3x+5x+12=8 | | -2(2x+4)=-20 | | (2x+16)=96 | | 3/5x+80=x | | 7=j+26/7 | | G=-9a | | 2(p-1)+7(3p+2)=7(3p-4) | | 9+5x=x-1 | | -4x-4(3x+25)=12 | | 4x^2+1.25x=0.375 | | 4(n-3)+8(2n-3)=4 |

Equations solver categories